Thursday 21 February 2008

HLSL - Part 1.

HLSL (High Level Shader Language) is used to create vertex and pixel shader effects.

In November of 2007 I learnt HLSL and created a some effects using AMD's RenderMonkey 1.71.The following are some of the shader models I created.

Sepia

This sepia shader model is a post-processing effect that could be applied to a colour at any time. Sepia tone effects produce images coloured in tones of brown and can commonly be found as a feature on modern digital cameras.

The implemented effect uses a adjustable percentage value which is used to linearly interpolate from no sepia tone to fully sepia.

I added a 2D sepia effect using thje same function but applied to a screen aligned quad in order to provide good visual examples.



Specular Highlight

Specular highlights are the bright spots of light that are seen when bright lights reflect off shiny objects. In computer games, specular highlights help give the user a clear idea of an object’s shape and position within a scene. There are several specular highlighting models that can be used to give varying visual effects.

The specular highlight is added to the ambient and diffuse colour values to produce a simple model for the output colour of the object at a specific pixel.

There are several basic specular highlight formulae that produce varying visual effects. I have implemented a Gaussian distribution model and a Beckmann distribution model, but will just discuss the Beckmann distribution here.

The Beckmann distribution model offers a more realistic physics model than the Gaussian distribution, however is much more computationally heavy. For this reason, I have calculated the majority of the non-specular processing on the vertex shader to reduce the number of arithmetic logic commands processed by the pixel shader.

The follwing images show the Beckmann distribution with varying surface smoothness values.






Edge Glow

The Edge Glow effect is not based on any realistic lighting model, but on an effect used in the game Super Mario Galaxy. The game is based in space where the backgrounds are primarily dark shades. To help the 3D models rendered against these darker backgrounds stand out, the models all appear to have glowing edges.


From looking at screenshots, I created a formula to generate a similar effect. I also added a scaling value to adjust the amount of glow applied by the process. The following images show the effect in action.


No comments: